(x^2-x-40)^(3/4)

Simple and best practice solution for (x^2-x-40)^(3/4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-x-40)^(3/4) equation:


D( x )

x^2-x-40 < 0

x^2-x-40 < 0

x^2-x-40 < 0

x^2-x-40 < 0

DELTA = (-1)^2-(-40*1*4)

DELTA = 161

DELTA > 0

x = (161^(1/2)+1)/(1*2) or x = (1-161^(1/2))/(1*2)

x = (161^(1/2)+1)/2 or x = (1-161^(1/2))/2

a = 1

a > 0

x in ((1-161^(1/2))/2:(161^(1/2)+1)/2)

x in (-oo:(1-161^(1/2))/2> U <(161^(1/2)+1)/2:+oo)

(x^2-x-40)^(3/4) = 0

x^2-x-40 = 0

x^2-x-40 = 0

DELTA = (-1)^2-(-40*1*4)

DELTA = 161

DELTA > 0

x = (161^(1/2)+1)/(1*2) or x = (1-161^(1/2))/(1*2)

x = (161^(1/2)+1)/2 or x = (1-161^(1/2))/2

(x-((1-161^(1/2))/2))*(x-((161^(1/2)+1)/2)) = 0

(x-((1-161^(1/2))/2))^(3/4)*(x-((161^(1/2)+1)/2))^(3/4) = 0

( x-((1-161^(1/2))/2) )

x-((1-161^(1/2))/2) = 0 // + (1-161^(1/2))/2

x = (1-161^(1/2))/2

( x-((161^(1/2)+1)/2) )

x-((161^(1/2)+1)/2) = 0 // + (161^(1/2)+1)/2

x = (161^(1/2)+1)/2

x in { (1-161^(1/2))/2, (161^(1/2)+1)/2 }

See similar equations:

| 81t^2+h-d=bt | | 4x^3+3x^2-64x-48=0 | | -81t^2-h+bt+d=0 | | 7=-7v+2(v+6) | | -81t^2+bt+d-h=0 | | h-d=-81t^2+bt | | w^8/w^3= | | -81t^2+bt=h-d | | 9x+y=135 | | (12a-b)*(12a+b)= | | 5x-15x= | | (x^2+x+4)*(x-4)= | | 4x^2-3t-20=0 | | (4w-6f)*(4w+5f)= | | 80=32(x-3)+8 | | (4c-2)*(5c+4)= | | 6x^2-1x+1=0 | | (2b+1)*(6b+2)= | | (c+8)*(c-6)= | | 6x^5-21x^4-45x^3=0 | | 4-2b=-2(b-3) | | 1.9=-log(x) | | 8(3-9)=72-24 | | 6x(3x^2-9x+4)= | | (7x-3)(7x+3)= | | p=c+.3*p | | -5/16 | | (D^3-3D^2+3D-1)y=0 | | (5x-10)=(3x-2) | | 10t^2-t-2=0 | | (2x)(3y^8)((5x^6)(y^9))= | | 20=3(2x+2) |

Equations solver categories